中考数学卷子(2022中考数学真题试卷)

说起广东中考数学出题人道歉,大部分人都知道,也许有人问2022中考数学真题试卷,下面就和小编来看看广东中考数学出题人道歉!

中考数学卷子

在2022年的时候,北京中考数学卷非常的简单,很多家长觉得小学生能够拿几十分。这样的题没有必要给初中生做,因此得到了广泛的质疑。家长觉得这样的数学题目不利于选拔人才,并没有让孩子在之前十几年中的努力学习得到了相应的体现。

中考对每一位学生来说都是非常宝贵的,因为这是自己进入高中的保证。同时大家在拿到这张中考卷子的时候会发现前几道数学选择题非常的简单,其实不用草稿纸也能够准确地得出答案。而且考的都是一些基本知识,虽然有一些数学题会出压轴题,但是这些压轴题基本上难不倒这些学生。因此这次试卷的难度很低,家长纷纷担心害怕孩子有了这一次成功的经验。会觉得自己不努力也能够考上一个比较理想的学校,因此会影响到以后学习的进步。

在中学毕业之后,学生会进行一次分流。如果成绩比较差劲的话,大家就可以去上职业学校,有一些学生只考了300、400多分,这个成绩是没有办法上高中的。因此家长就可以让孩子去选择一条最适合自己的路。很多学生到了高中阶段发现课程特别难,这样会影响到他们学习的自信心以及积极性。并不利于以后的进步。

数学在现实生活中的用处是非常大的,如果学的越好的话,大家计算速度就会越来越快。同时现在国家要求学生减负,可以让学生减轻课业负担,真正的实现德智体美的全面发。,这是一个非常好的趋势。家长可能没有办法意识到学生在考试方面的压力减轻许多之后,他就能够有更多时间去培养自己的兴趣爱好。因此家长可以用全面客观的态度去看待这次事件。

2022中考数学真题试卷

2022年西安中考数学考试已经结束了,下面为您带来的是试卷点评,仅供参考。

西安中考数学试卷难度点评 全卷立足基础知识、基本技能、基本思想、基本活动经验对多道题目的考查方式进行了创新,新的考查方式使得试卷整体形式新颖,设问灵动。22题将以往的“应用一次函数解决实际问题”变为“以流程图和表格的形式直接考查一次函数的相关概念”,聚焦概念本质;25题“二次函数与几何图形的综合题”变为“应用二次函数解决实际问题”,让学生体会到数学的应用价值。新的考查方式都可以在课本上找到原型,既突出对概念本质的考查,又引导大家回归课本、重视数学概念的学习和理解,同时也提升了学生的获得感和成就感,增强了学生学好数学的信心,彰显《数学课程标准》中“人人学有

中考数学试卷免费下载

《2020全国中考数学真题试卷及答案解析汇总大全docx可打印版》百度网盘pdf最新全集下载:

链接:

?pwd=qw8k 提取码: qw8k

简介:中考数学做题是非常关键的,而有针对性的做一些历年的真题效果肯定会好很多,2020全国中考数学真题试卷及答案解析汇总大全是包含了全国各省市的中考题目。

中考数学真题试卷电子版

《初中数学中考真题精编》百度网盘资源免费下载

链接:

?pwd=8hgp 提取码: 8hgp

2008-2019学年初中数学中考真题精编Word版本 累计1715份|2019全国各地中考数学试题073份.rar|2018全国各地中考数学试题100份.rar|2017全国各地中考数学试题154份.zip|2016全国各地中考数学试题151份.zip|2015全国各地中考数学试题162份.rar|2014全国各地中考数学试题165份.zip|2013全国各地中考数学试题170份.zip|2012全国各地中考数学试题172份.zip|2011全国各地中考数学试题150份.zip|2010全国各地中考数学试题150份.zip|2009全国各地中考数学试题151份.zip|2008全国各地中考数学试卷157份.rar  

中考数学卷子(2022中考数学真题试卷)

初三数学真题试卷及答案

2009年广州市初中毕业生学业考试

数 学

满分150分,考试时间120分钟

一、选择题(本大题共10小题,每小题3分,满分30分。在每小题给出的四个选项中,只有一项是符合题目要求的。)

1. 将图1所示的图案通过平移后可以得到的图案是( A )

2. 如图2,AB‖CD,直线 分别与AB、CD相交,若∠1=130°,则∠2=( C )

(A)40° (B)50° (C)130° (D)140°

3. 实数 、 在数轴上的位置如图3所示,则 与 的大小关系是( C )

(A) (B)

(C) (D)无法确定

4. 二次函数 的最小值是( A )

(A)2 (B)1 (C)-1 (D)-2

5. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误的是( D )

(A)这一天中最高气温是24℃

(B)这一天中最高气温与最低气温的差为16℃

(C)这一天中2时至14时之间的气温在逐渐升高

(D)这一天中只有14时至24时之间的气温在逐渐降低

6. 下列运算正确的是( B )

(A) (B)

(C) (D)

7. 下列函数中,自变量 的取值范围是 ≥3的是( D )

(A) (B)

(C) (D)

8. 只用下列正多边形地砖中的一种,能够铺满地面的是( C )

(A)正十边形 (B)正八边形

(C)正六边形 (D)正五边形

9. 已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图5)所示),则sinθ的值为( B )

(A) (B) (C) (D)

10. 如图6,在 ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG= ,则ΔCEF的周长为( A )

(A)8 (B)9.5 (C)10 (D)11.5

二、填空题(本大题共6小题,每小题3分,满分18分)

11. 已知函数 ,当 =1时, 的值是________2

12. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________9.3

13. 绝对值是6的数是________+6,-6

14. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________略

15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第 个“广”字中的棋子个数是________2n+5

16. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成4

三、解答题(本大题共9小题,满分102分。解答应写出文字说明、证明过程或演算步骤)

17. (本小题满分9分)

如图9,在ΔABC中,D、E、F分别为边AB、BC、CA的中点。

证明:四边形DECF是平行四边形。

18. (本小题满分10分)

解方程

19.(本小题满分10分)

先化简,再求值: ,其中

20.(本小题满分10分)

如图10,在⊙O中,∠ACB=∠BDC=60°,AC= ,

(1)求∠BAC的度数; (2)求⊙O的周长

21. (本小题满分12分)

有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别。现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个,且只能放一个小球。

(1)请用树状图或其它适当的形式列举出3个小球放入盒子的所有可能情况;

(2)求红球恰好被放入②号盒子的概率。

22. (本小题满分12分)

如图11,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2)。

(1)写出点A、B的坐标;

(2)求直线MN所对应的函数关系式;

(3)利用尺规作出线段AB关于直线MN的对称图形(保留作图痕迹,不写作法)。

23. (本小题满分12分)

为了拉动内需,广东启动“家电下乡”活动。某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。

(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?

(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元(结果保留2个有效数字)?

24.(本小题满分14分)

如图12,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。

(1)若AG=AE,证明:AF=AH;

(2)若∠FAH=45°,证明:AG+AE=FH;

(3)若RtΔGBF的周长为1,求矩形EPHD的面积。

解:(1)易证ΔABF≌ΔADH,所以AF=AH

(2)如图,将ΔADH绕点A顺时针旋转90度,如图,易证ΔAFH≌ΔAFM,得FH=MB+BF,即:FH=AG+AE

(3)设PE=x,PH=y,易得BG=1-x,BF=1-y,FG=x+y-1,由勾股定理,得

(1-x)2+(1-y)2=( x+y-1)2,

化简得xy=0.5,

所以矩形EPHD的面积为0.5.

25.(本小题满分14分)

如图13,二次函数 的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为 。

(1)求该二次函数的关系式;

(2)过y轴上的一点M(0,m)作y轴上午垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;

(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。

解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB= ,得AB=

设A(a,0),B(b,0)

AB=b-a= = ,解得p= ,但p0,所以p= 。

所以解析式为:

(2)令y=0,解方程得 ,得 ,所以A( ,0),B(2,0),在直角三角形AOC中可求得AC= ,同样可求得BC= ,,显然AC2+BC2=AB2,得三角形ABC是直角三角形。AB为斜边,所以外接圆的直径为AB= ,所以 .

(3)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组 得D( ,9)

②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把 A( ,0)代入得AD解析式为y=0.5x+0.25,解方程组 得D( )

综上,所以存在两点:( ,9)或( )。

2009年广州市初中毕业生学业考试

数学试题参考答案

一、选择题:本题考查基础知识和基本运算,每小题3分,满分30分.

题号 1 2 3 4 5 6 7 8 9 10

答案 A C C A D B D C B A

二、填空题:本题考查基础知识和基本运算,每小题3分,满分18分.

11. 2 12. 9.3 13.

14. 如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直

15. 15; 16. 4

三、解答题:本大题考查基础知识和基本运算,及数学能力,满分102分.

17.本小题主要考查平行四边形的判定、中位线等基础知识,考查几何推理能力和空间观念.满分9分.

证法1: 分别是边 的中点,

∴ .

同理 .

∴四边形 是平行四边形.

证法2: 分别是边 的中点,

∴ .

为 的中点,

∴ .

∴ .

∴四边形 是平行四边形.

18.本小题主要考查分式方程等基本运算技能,考查基本的代数计算能力.满分9分.

解:由原方程得 ,

即 ,

即 ,

检验:当x = 3时, .

∴ 是原方程的根.

19.本小题主要考查整式的运算、平方差公式等基础知识,考查基本的代数计算能力.满分10分.

解:

=

=

= .

将 代入 ,得:

.

20.本小题主要考查圆、等边三角形等基础知识,考查计算能力、推理能力和空间观念.满分10分.

解:(1) ,

∴ .

(2) ,

∴ .

∴ 是等边三角形.

求 的半径给出以下四种方法:

方法1:连结 并延长交 于点 (如图1).

∵ 是等边三角形,

∴圆心 既是 的外心又是重心,还是垂心.

在 中 , ,

∴ .

∴ ,即 的半径为 .

方法2:连结 、 ,作 交 于点 (如图2).

∴ .

∴ .

∵ ,

∴ 中 .

在 中, ,

∴ ,即 .

∴ ,即 的半径为 .

方法3:连结 、 ,作 交 于点 (如图2).

是等边三角形 的外心,也是 的角平分线的交点,

∴ , .

在 中, ,即 .

∴ .

∴ ,即 的半径为 .

方法4:连结 、 ,作 交 于点 (如图2).

是等边三角形的外心,也是 的角平分线的交点,

∴ , .

在 中,设 ,则 ,

∵ .

∴ .

解得 .

∴ ,即 的半径为 .

∴ 的周长为 ,即 .

21.本小题主要考查概率等基本的概念,考查.满分12分.

(1)解法1:可画树状图如下:

共6种情况.

解法2:3个小球分别放入编号为①、②、③的三个盒子的所有可能情况为:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红共6种.

(2)解:从(1)可知,红球恰好放入2号盒子的可能结果有白红蓝、蓝红白共2种,

所以红球恰好放入2号盒子的概率 .

22. 本小题主要考查图形的坐标、轴对称图形、尺规作图、一次函数等基础知识,考查用待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能力,满分12分.

解:(1) , ;

(2)解法1:∵直线 经过坐标原点,

∴设所求函数的关系式是 ,

又点 的坐标为(1,2),

∴ ,

∴直线 所对应的函数关系式是 .

解法2:设所求函数的关系式是 ,

则由题意得:

解这个方程组,得

∴直线 所对应的函数关系式是 .

(3)利用直尺和圆规,作线段 关于直线 的对

称图形 ,如图所示.

23.本小题主要考查建立二元一次方程组模型解决简单实际问题的能力,考查基本的代数计算推理能力.满分12分.

解:(1)设启动活动前的一个月销售给农户的I型冰箱和II型冰箱分别为 、 台.

根据题意得

解得

∴启动活动前的一个月销售给农户的I型冰箱和II型冰箱分别为560台和400台.

(2)I型冰箱政府补贴金额: 元,

II 型冰箱政府补贴金额: 元.

∴启动活动后第一个月两种型号的冰箱政府一共补贴金额:

答:启动活动后第一个月两种型号的冰箱政府一共约补贴农户 元.

24. 本小题主要考查正方形、矩形、三角形全等等基础知识,考查计算能力、推理能力和空间观念.满分14分.

(1)证明1:在 与 中,

∵ , ,

∴ ≌ .

∴ .

证明2:在 中, .

在 中, .

∵ , ,

∴ .

(2)证明1:将 绕点 顺时针旋转 到 的位置.

在 与 中,

∵ , ,

∴ ≌ .

∴ .

∵ ,

∴ .

证明2:延长 至点 ,使 ,连结 .

在 与 中,

∵ , ,

∴ ≌ .

∴ , .

∵ ,

∴ .

∴ .

∴ ≌ .

∴ .

∵ ,

∴ .

(3)设 , ,则 , .( )

在 中, .

∵ 的周长为1,

∴ .

即 .

即 .

整理得 . (*)

求矩形 的面积给出以下两种方法:

方法1:由(*)得 . ①

∴矩形 的面积 ②

将①代入②得

∴矩形 的面积是 .

方法2:由(*)得 ,

∴矩形 的面积

=

=

=

∴矩形 的面积是 .

25. 本小题主要考查二次函数、解直角三角形等基础知识,考查运算能力、推理能力和空间观念.满分14分.

解:(1)设点 其中 .

∵抛物线 过点 ,

∴ .

∴ .

∴ .

∵ 抛物线 与 轴交于 、 两点,

∴ 是方程 的两个实根.

求 的值给出以下两种方法:

方法1:由韦达定理得: .

∵ 的面积为 ,

∴ ,即 .

∴ .

∴ .

∵ ,

∴ .

∴ .

解得 .

∵ .

∴ .

∴所求二次函数的关系式为 .

方法2:由求根公式得 .

∵ 的面积为 ,

∴ ,即 .

∴ .

∴ .

解得 .

∵ .

∴ .

∴所求二次函数的关系式为 .

(2)令 ,解得 .

∴ .

在Rt△ 中, ,

在Rt△ 中, ,

∵ ,

∴ .

∴ .

∴ 是直角三角形.

∴ 的外接圆的圆心是斜边 的中点.

∴ 的外接圆的半径 .

∵垂线与 的外接圆有公共点,

∴ .

(3)假设在二次函数 的图象上存在点 ,使得四边形 是直角梯形.

① 若 ,设点 的坐标为 , ,

过 作 轴,垂足为 , 如图1所示.

求点 的坐标给出以下两种方法:

方法1:在Rt△ 中,

在Rt△ 中, ,

∵ ,

∴ .

∴ .

解得 或 .

∵ ,

∴ ,此时点 的坐标为 .

而 ,因此当 时在抛物线 上存在点 ,使得四边形 是直角梯形.

方法2:在Rt△ 与Rt△ 中, ,

∴Rt△ ∽ Rt△ .

∴ .

∴ .

以下同方法1.

② 若 ,设点 的坐标为 , ,

过 作 轴,垂足为 , 如图2所示,………5分

在Rt△ 中, ,

在Rt△ 中, ,

∵ ,

∴ .

∴ .

解得 或 .

∵ ,

∴ ,此时点 的坐标为 .

此时 ,因此当 时,在抛物线 上存在点 ,使得四边形 是直角梯形.

综上所述,在抛物线 上存在点 ,使得四边形 是直角梯形,并且点 的坐标为 或 .

广东中考数学出题人道歉

未公布。2021年广东数学中考出题人是彭海燕老师,早年毕业于华中师大,是中学特级教师,高考阅卷题组长。因为高考的出题人属于机密,为了防止漏题是不会提前公布的,并且没有特殊情况是不会公布的,所以彭海燕会不会在2022年参加高考的出题并未公布。

以上就是广东中考数学出题人道歉和2022中考数学真题试卷的全部内容,还有不明白的可以直接咨询~~

本图文由用户发布,该文仅代表作者本人观点,本站仅提供信息存储空间服务。如发现本站有涉嫌抄袭侵权/违法违规的内容,联系本站举报。转发注明出处:https://www.xsy-edu.com/n/29798.html

发表回复

登录后才能评论