说起高中数学知识点总结及公式大全,大部分人都知道,也许有人问高中数学知识点总结及公式大全人教版,下面就和小编来看看高中数学知识点总结及公式大全!
高一到高三数学公式和知识点有哪些?
一、高中必背88个数学公式——圆的公式
1、圆体积=4/3(pi)(r^3)
2、面积=(pi)(r^2)
3、周长=2(pi)r
4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】
5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f0】
二、高中必背88个数学公式——椭圆公式
1、椭圆周长公式:l=2πb+4(a-b)
2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.
3、椭圆面积公式:s=πab
4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
三、高中必背88个数学公式——两角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
四、高中必背88个数学公式——倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
五、高中必背88个数学公式——半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
数学老师精心整理43条高中数学公式及知识点,高一到高三都能用!
1 函数的单调性
2 函数的奇偶性
3 函数在某处的导数的几何意义
4 几种常见函数的导数
5 导数的运算法则
6 求函数的极值
7 分数指数幂
8 根式的性质
9 有理数指数幂的运算性质
10 对数公式
11 常见的函数图像
12 同角三角函数的基本关系式
13 正弦、余弦的诱导公式
14 和角与差角公式
15 二倍角公式
16 三角函数的周期
17 正弦定理
18 余弦定理
19面积定理
20三角形内角和定理
21a与b的数量积
22平面向量的坐标运算
23两向量的夹角公式
24平面两点间距离公式
25向量的平行与垂直
26数列通项公式与前n项和的关系
27等差数列通项公事与前n项和公式
28等差数列的性质
29等比数列的通项公式与前n项和公式
30等比数列的性质
31常用不等式
32直线的三角方程
33两条直线的垂直和平行
34点到直线的距离
35圆的两种方程
36点与圆的位置关系
37直线与圆的位置关系
38椭圆、双曲线、抛物线的性质
39双曲线方程与渐近线方程的关系
40抛物线的焦半径公式
41平方差标准差的计算
42回归直线方程
43独立性检验
44复数
45参数方程、极坐标化为直角坐标
高中数学知识点总结及公式大全 高中文科数学必背公式总结及知识点汇总
1、常用数学公式表
(1)乘法与因式分解
a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。
(2)三角不等式
|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。
(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。
(4)根与系数的关系:X1+X2=-b/aX1*X2=c/a,注:韦达定理。
(5)判别式
1)b2-4a=0,注:方程有相等的两实根。
2)b2-4ac0,注:方程有一个实根。
3)b2-4ac0,注:方程有共轭复数根。
2、三角函数公式
(1)两角和公式
sin(A+B)=sinAcosB+cosAsinB;sin(A-B)=sinAcosB-sinBcosA;cos(A+B)=cosAcosB-sinAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB);ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA);ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)。
(2)倍角公式
tan2A=2tanA/(1-tan2A);ctg2A=(ctg2A-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
(3)半角公式
sin(A/2)=√((1-cosA)/2);sin(A/2)=-√((1-cosA)/2);cos(A/2)=√((1+cosA)/2);cos(A/2)=-√((1+cosA)/2);tan(A/2)=√((1-cosA)/((1+cosA));tan(A/2)=-√((1-cosA)/((1+cosA));ctg(A/2)=√((1+cosA)/((1-cosA));ctg(A/2)=-√((1+cosA)/((1-cosA))。
(4)和差化积公式
2sinAcosB=sin(A+B)+sin(A-B);2cosAsinB=sin(A+B)-sin(A-B);2cosAcosB=cos(A+B)-sin(A-B);-2sinAsinB=cos(A+B)-cos(A-B);sinA+sinB=2sin((A+B)/2)cos((A-B)/2;cosA+cosB=2cos((A+B)/2)sin((A-B)/2);tanA+tanB=sin(A+B)/cosAcosB;tanA-tanB=sin(A-B)/cosAcosB;ctgA+ctgBsin(A+B)/sinAsinB;-ctgA+ctgBsin(A+B)/sinAsinB
(5)某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+;n(n+1)=n(n+1)(n+2)/3。
(6)正弦定理:a/sinA=b/sinB=c/sinC=2R,注:其中R表示三角形的外接圆半径。
(7)余弦定理:b2=a2+c2-2accosB,注:角B是边a和边c的夹角。
3、高中文科数学知识点口诀记忆
(1)《集合》
1)集合概念不定义,属性相同来相聚;内有子交并补集,运算结果是集合。
2)集合元素三特征,互异无序确定性;集合元素尽相同,两个集合才相等。
3)书写规范符号化,表示列举描述法;描述法中花括号,对象xy须看清。
4)数集点集须留意,点集本是实数对;元素集合讲属于,集合之间谈包含。
5)0和空集不相同,正确区分才成功;运算如果有难处,文氏数轴来相助。
(2)《常用逻辑用语》
1)真假能判是命题,条件结论很清晰;命题形式有四种,分成两双同真假。
2)若p则q真命题,p和q充分条件;q是p必要条件,原逆皆真称充要。
3)判断条件有三法,举出反例定义法;;由小推大集合法,逆否命题等价法。
4)逻辑连词或且非,或命题一真即真;且命题一假即假,非命题真假相反。
5)且命题的否定式,否定式的或命题;或命题的否定式,否定式的且命题。
6)量词一般有两个,全称量词所有的;存在量词有一个,全称特称两命题。
6)全称命题否定式,特称命题肯定式;含有量词否定式,改写量词否结论。
(3)《函数概念》
1)函数结构三要素,值域法则定义域;函数形式有三法,列表图像解析法。
2)特殊函数有三种,分段组合和复合;定义域的要求多,分式分母不为0。
3)偶次方根须非负,0的次方要为正;底数非1为正数,零和负数无对数。
4)正切函数脚不直,数列序号正整数;多个函数求交集,实际意义须满足。
5)函数值域的求法,配方图像定义法;部分整体观察法,换元代入单调法。
6)分离常数判别式,均值定理不等法;怎样去求解析式,题目常考两性式。
7)抽象函数解析式,代入换元配凑法,方程思想消元法;指定类型解析式,
8)运用待定系数法。性质奇偶用单调,观察图像最美妙;若要详细证明它,
9)还须将那定义抓。组合函数单调性,判断它们有法则,增加上增等于增,
10)增减去减等于增,减加上减等于减,减减去增等于减。复合函数单调性,
11)同增异减巧判断。复合函数奇偶性,偶加减偶等于偶,奇加减奇等于奇。
12)偶加减奇非奇偶,偶乘除偶等于偶,奇乘除奇等于偶,奇乘除偶等于奇。
13)周期对称两种性,观察结构最可行;内同表示周期性,内反表示对称性。
14)中心对称轴对称,函数还具周期性;函数零点方程根,图像交点横坐标;
15)函数零点有几个,画出图像看交点;两个端点都代入,相乘为负有零点。
4、文科数学必背知识点归纳与总结
(1)集合有关概念
1)集合的中元素的三个特性:
2)元素的确定性:互异性、无序性
3)集合的表示方法:列举法与描述法。
4)注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集,N*或N+整数集Z有理数集Q实数集R。
(2)集合间的基本关系
1)“包含”关系—子集,注意:BA有两种可能。A是B的一部分;A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A。
2)不含任何元素的集合叫做空集,记为Φ;规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集。
高中数学知识点全总结公式是什么?
高中数学知识点全总结公式:
高中数学常用公式乘法与因式分。
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)。
高中数学常用公式三角不等式。
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b。
|a-b|≥|a|-|b|-|a|≤a≤|a|。
一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a。
根与系数的关系X1+X2=-b/a X1*X2=c/a注:韦达定理。
高中数学常用公式判别式。
b2-4ac=0注:方程有两个相等的实根。
b2-4ac0注:方程有两个不等的实根。
b2-4ac0注:方程没有实根,有共轭复数根。
高中数学常用公式三角函数公式。
两角和公式。
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA。
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB。
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)。
倍角公式。
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga。
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
半角公式。
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)。
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)。
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))。
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))。
和差化积。
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)。
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)。
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)。
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB。
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB。
高中数学知识点总结及公式大全的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高中数学知识点总结及公式大全人教版、高中数学知识点总结及公式大全的信息别忘了在本站进行查找喔。
本图文由用户发布,该文仅代表作者本人观点,本站仅提供信息存储空间服务。如发现本站有涉嫌抄袭侵权/违法违规的内容,联系本站举报。转发注明出处:https://www.xsy-edu.com/n/2076.html