可导函数的极值点一定是驻点吗(驻点什么情况下是极值点)

可导函数的极值点一定是驻点吗

可导函数的极值点发生于导数由正变负,或由负变正的点上,所以一定为驻点。

驻点与拐点的区别:

拐点是导数符号发生变化的点。拐点点可以是相对最大值或相对最小值(也称为局部最小值和最大值)。如果函数是可微分的,那么拐点是一个固定点,然而并不是所有的固定点都是拐点,如果函数是两次可微分的,则不转动点的固定点是水平拐点,例如,函数 x³在x = 0处有一个固定点,也是拐点,但不是转折点。

函数可导的条件:

如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

可导函数的极值点一定是驻点吗(驻点什么情况下是极值点)

驻点什么情况下是极值点

如果确定的是驻点的情况下,可以这样判断是否为极值点:

1、一阶导数在该点两侧的符号相反,就是极值点,左负右正是极小值点。左正右负是极大值点。一阶导数在该点两侧符号相同,就不是极值点。

2、如果该点有二阶导数,且二阶导数不是0,那么二阶导数为正就是极小值点,二阶导数为负就是极大值点。如果二阶导数为0,则回到1的情况下分析。

极值点

极值点作为函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。

若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。

极值点是驻点,驻点不一定是极值点

1、正确。

2、 具有偏导数的极值点必是驻点,但是驻点不一定是极值点。

3、极值点与最值点的区别:最值点可以有多个,比如y=sinx,2kπ+π/2都是最值点,也是极值点。最值点也可能不存在,比如y=x闭区间上一定有最大值点和最小值点,开区间则不一定。最值点是对全部定义域而言,而极值点就是局部最值点。

4、驻点:函数的一阶导数为0的点的x的值,驻点可以划分函数的单调区间。也称为稳定点,临界点。

5、最值点:定义在某数集里面的函数 如果能找到一点 使的f(X0)取最大或者最小 那么它们就是最值点。

①、如数列1/n 它有最大值点1,对应的最大值是1 ,但是没最小值点和最小值。

②、同样的道理,如果能让函数由数集上的定义改变成区间上的定义再改为在该区间上连续的话,那么我们可以模仿求极值点的方法去求最值点。这个时候我们一般是找函数的不可导点、稳定点、端点、极值点。

③、比如f(x)=|x|[-1  +1]因为0是它的不可导点,再验证一下,就知道0是它的最小值点(也是极小值点),1和-1是它的最大值点(不是极值点了)。

④、再如f(x)等于X的平方 :容易知道0是函数的极小值点和稳定点,验证一下也知道是最小值点。

最后说明下,极值点和最值点没有必然的连续,用集合语言描叙就是:并起来更大,交起来也不是空集。

6、极值点:

f(x)如果在X0的某领域有定义,并且f(x)≤f(X0)或者f(x)≥f(X0),那么我们就说X0是这个领域的极值点。

①、如D(x) :所有有理数是它的极大值点,所有无理数是它极小值点。

②、再如f(x)=|x|   [-1  +1]那么0是它的极小值点,但是1和-1不是它的极大值点。(因为1和-1不是领域中心)

③、再如任何数列都没有极值点(因为它不是定义在领域里的函数,而是定义在数集里面的函数)。

通过上面三个例子我们可以看出,函数只要在领域有定义且满足f(x)≤f(X0)或者f(x)≥f( X0),就是我们所说的极值点,而不需要函数一定在这个领域里连续。但是如果函数在该领域连续的话 ,那么我们更容易找它的极值点,这就是我们经常所说的极值的三大充分条件 (仅仅是充分条件!)(因为三大充分条件都是用导数去研究极值点的) 。

极值点处导数一定为0吗

极值点处导数并不一定为0,比如函数y=|x|而我们平时做的题目中的函数一般为基本函数如一次二次三次函数和正余弦函数等.这些函数是连续而且可导的,这些函数的极值处导数为零.故可以直接用.

本图文由用户发布,该文仅代表作者本人观点,本站仅提供信息存储空间服务。如发现本站有涉嫌抄袭侵权/违法违规的内容,联系本站举报。转发注明出处:https://www.xsy-edu.com/n/17761.html

发表回复

登录后才能评论