史上最难中考数学压轴题(史上最难中考数学压轴题计算量大)

说起史上最难中考数学压轴题,大部分人都知道,也许有人问史上最难中考数学压轴题计算量大,下面就和小编来看看史上最难中考数学压轴题!

求几道初中数学难度系数较高的数学压轴题

(2005杭州)25.(本小题满分10分)

为了参加市科技节展览,同学们制造了一

个截面为抛物线形的隧道模型,用了三种正方

形的钢筋支架.在画设计图时,如果在直角坐

标系中,抛物线的函数解析式为 ,

正方形ABCD的边长和正方形EFGH的边长

之比为5:1,求:

(1)抛物线解析式中常数 的值;

(2)正方形MNPQ的边长.

26.(本小题满分12分)在三角形ABC中,  .现有动点P从点A出发,沿射线AB向点B方向运动;动点Q从点C出发,沿射线CB也向点B方向运动.如果点P的速度是 /秒,点Q的速度是 /秒,它们同时出发,求:

(1)几秒钟后,ΔPBQ的面积是ΔABC的面积的一半?

(2)在第(1)问的前提下,P,Q两点之间的距离是多少?

(2005金华)24、(本题12分)

如图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE= ,过D,E两点作直线PQ,与BC边所在的直线MN相交于点F。

(1) 求tan∠ADE的值;

(2) 点G是线段AD上的一个动点(不运动至点A,D),GH⊥DE垂足为H,设DG为x,四边形AEHG的面积为y,请求出y与x之间的函数关系式;

(3) 如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O与直线PQ相切,同时又与矩形ABCD的某一边相切。问满足条件的⊙O有几个?并求出其中一个圆的半径。

25(本题14分)

如图,抛物线 经过点O(0,0),A(4,0),B(5,5),点C是y轴负半轴上一点,直线 经过B,C两点,且

(1) 求抛物线的解析式;

(2) 求直线 的解析式;

(3) 过O,B两点作直线,如果P是直线OB上的一个动点,过点P作直线PQ平行于y轴,交抛物线于点Q。问:是否存在点P,使得以P,Q,B为顶点的三角形与

△ OBC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由。

(2005绍兴)24.(本题满分12分)

E、F为 ABCD的对角线DB上三等分点,连AE并延长交DC于P,连PF并延长交AB于Q,如图①

(1) 在备用图中,画出满足上述条件的图形,记为图②,试用刻度尺在图①、②中量得AQ、BQ的长度,估计AQ、BQ间的关系,并填入下表

长度单位:cm

AQ长度 BQ长度 AQ、BQ间的关系

图①中

图②中

由上表可猜测AQ、BQ间的关系是__________________

(2) 上述(1)中的猜测AQ、BQ间的关系成立吗?为什么?

(3) 若将 ABCD改为梯形(AB‖CD)其他条件不变,此时(1)中猜测AQ、BQ间的关系是否成立?(不必说明理由)

25.(以下两小题选做一题,第(1)小题满分14分,第(2)小题满分为10分。若两小题都做,以第(1)小题计分)

选做第________小题.

(1) 一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4。

① 如图,将纸片沿CE对折,点B落在x轴上的点D处,求点D的坐标;

② 在①中,设BD与CE的交点为P,若点P,B在抛物线 上,求b,c的值;

③ 若将纸片沿直线l对折,点B落在坐标轴上的点F处,l与BF的交点为Q,若点Q在②的抛物线上,求l 的解析式。

(2) 一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4。

①求直线AC的解析式;

②若M为AC与BO的交点,点M在抛物线 上,求k的值;

③将纸片沿CE对折,点B落在x轴上的点D处,试判断点D是否在②的抛物线上,并说明理由。

(2005宁波)27.已知抛物线y=-x2-2kx+3k2(k0)交x轴于A、B两点,交y轴于点C,以AB 为直径的⊙E交y轴于点D、F(如图),且DF=4,G 是劣弧A D上的动点(不与点A、D重合),直线CG交x轴于点P.

(1) 求抛物线的解析式;

(2) 当直线 CG是⊙E的切线时,求tan∠PCO的值.

(3) 当直线CG是⊙E的割线时,作GM⊥AB,垂足为H,交PF于点M,交⊙E于另一点N,设MN=t,GM=u,求u关于t的函数关系式.

(2005丽水)25、(本题14分)

为宣传秀山丽水,在“丽水文化摄影节”前夕,丽水电

视台摄制组乘船往返于丽水(A)、青田(B)两码头,在

A、B间设立拍摄中心C,拍摄瓯江沿岸的景色.往返过程中,船在C、B处均不停留,离开码头A、B的距离s(千米)与航行的时间t(小时)之间的函数关系如图所示.根据图象提供的信息,解答下列问题:

(1)船只从码头A→B,航行的时间为    小时、航行的速度为    千米/时;船只从码头B→A,航行的时间为    小时、航行的速度为    千米/时;

(2)过点C作CH‖t轴,分别交AD、DF于点G、H,设AC= ,GH=y,求出y与 之间的函数关系式;

(3)若拍摄中心C设在离A码头25千米处, 摄制组在拍摄中心C分两组行动,一组乘橡皮艇漂流而下,另一组乘船到达码头B后,立即返回.

①求船只往返C、B两处所用的时间;

②两组在途中相遇,求相遇时船只离拍摄中心C

有多远.

24. 如图,边长为1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.

(1) 当t= 时,求直线DE的函数表达式;

(2) 如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;

(3) 当OD2+DE 2的算术平方根取最小值时,

求点E的坐标.

(2005湖州)24.(本小题12分)如图,已知直角坐标系内的梯形AOBC(O为原点),AC‖OB,OC⊥BC,AC,OB的长是关于x的方程x2-(k+2)x+5=0的两个根,且S△AOC:S△BOC=1:5。

(1)填空:0C=________,k=________;

(2)求经过O,C,B三点的抛物线的另一个交点为D,动点P,Q分别从O,D同时出发,都以每秒1个单位的速度运动,其中点P沿OB由O→B运动,点Q沿DC由D→C运动,过点Q作QM⊥CD交BC于点M,连结PM,设动点运动时间为t秒,请你探索:当t为何值时,△PMB是直角三角形。

四、自选题(本题有2个小题,共10分)

注意:本题为自选题,供考生选做。自选题得分将计入本学科的总分,但考生所得总分最多为120分。

25.(本小题4分)如图,四边形ABCD和BEFG均为正方形,则 =________。(结果不取近似值)

26.(本小题6分)某高速公路收费站,有m(m0)辆汽车排队等候收费通过。假设通过收费站的车流量(每分钟通过的汽车数量)保持不变,每个收费窗口的收费检票的速度也是不变的。若开放一个收费窗口,则需20分钟才可能将原来排队等候的汽车以及后来接上来的汽车全部收费通过;若同时开放两个收费窗口,则只需8分钟也可将原来排队等候的汽车以及后来接上来的汽车全部收费通过。若要求在3分钟内将排队等候收费的汽车全部通过,并使后来到站的汽车也随到随时收费通过,请问至少要同时开放几个收费窗口?

答案:

(杭州)25. (1)常数 的值为   (2)正方形MNPQ的边长为

26. (1)2秒或12秒钟后,ΔPBQ的面积是ΔABC的面积的一半 (2)PQ= 或

(丽水)25.(本题14分)

解:(1)3、25;5、15;……………………………………………………4分

(2)解法一:设CH交DE于M,由题意:

ME=AC=x ,DM=75–x, … ……………………………………1分

∵GH//AF,△DGH∽△DAF , …………………………………1分

∴   ,即 , ………………………………2分

∴   y=8 . …………………………………………………1分

解法二:由(1)知:A→B(顺流)速度为25千米/时,B→A(逆流)速度为15千米/时,y即为船往返C、B的时间.

y= ,即y=8 .(此解法也相应给5分)

(3)①当x=25时,y=8 (小时).……………………2分

②解法一:

设船在静水中的速度是a千米∕时,水流的速度是b千米∕时,

a+b=25        a=20

a–b=15       b=5

船到B码头的时间t 1= =2小时,此时橡皮艇漂流了10千米.

设船又过t2小时与漂流而下橡皮艇相遇,

则(5+15)t2=75–25–10,∴t2=2.   ……………………………1分

∴船只离拍摄中心C距离S=(t 1+ t2)×5=20千米.  …………1分

解法二:

设橡皮艇从拍摄中心C漂流至P处与船返回时相遇,

得 ,∴CP=20千米.

(2005浙江学业考试)24. 解:(1)易知△CDO∽△BED,

所以 ,即 ,得BE= ,则点E

的坐标为E(1, ).……………………………(2分)

设直线DE的一次函数表达式为y=kx+b,直线经过两点D( ,1)和E(1, ),代入y=kx+b得 , ,故所求直线DE的函数表达式为y= .…………………………(2分)

(注:用其它三角形相似的方法求函数表达式,参照上述解法给分)

(2) 存在S的最大值.……………………………………………………………………1分

求最大值:易知△COD∽△BDE,所以 ,即 ,BE=t-t2,……1分

×1×(1+t-t2) .………………………………………………1分

故当t= 时,S有最大值 .………………………………………………………2分

(3) 在Rt△OED中,OD2+DE 2=OE2,OD2+DE 2的算术平方根取最小值,也就是斜边OE取最小值.……………………………………………………………………………1分

当斜边OE取最小值且一直角边OA为定值时,另一直角边AE达到最小值,……1分

于是△OEA的面积达到最小值,………………………………………………………1分

此时,梯形COEB的面积达到最大值.………………………………………………1分

由(2)知,当t= 时,梯形COEB的面积达到最大值,故所求点E的坐标是

(1, ).…………………………………………………………………………………1分

注:(3)小题的另一种解法: = ,猜想当t= 时, 取最小值(其值 ).…………………………………1分

运用计算器可以验证猜想是正确的,………………………………………………3分

此时点E的坐标是(1, ).…………………………………………………………1分

谁能提供几道很难的初三数学压轴题,满意再追加50分

解:(1)B(0,4),OB=4,OA=3,OC=3,

直线解析式为:y=-43x+4,

抛物线的解析式为:y=x2-4x+3;

(2)(2)若⊙P与直线AB及x轴都相切,

则点P在∠BAO或它的外角的平分线所在的直线上.

①设∠BAO的外角平分线交y轴于D,过D作DH⊥AB于H,

则DH=DO=m,BD=4-m,AH=AO=3,BH=5-3=2

在Rt△BHD中,BD2=BH2+DH2

即(4-m)2=m2+22,

解得:m=32

即D(0,1.5)

则直线AD的解析式为:y=-12x+32,

将其与抛物线的解析式y=x2-4x+3联立解得:{x1=3;y1=0,{x2=12;y2=54

即P(12,54)

②设∠BAO外角的平分线交y轴于G,

则AG⊥AD于A,则△DOA∽△AOG,故OG=2OA=6

即G(0,-6)直线DG解析式为:y=2x-6

将其与抛物线的解析式y=x2-4x+3联立解得:{x1=3;y1=0

∴存在点P(12,54),使⊙P与直线AB及x轴都相切

(3)过P作PM⊥x轴于M,显然PM是Rt△OQE的中位线,即OE=2OM=2|x|,QE=2PM

点P在抛物线x2-4x+3上,则P(x,x2-4x+3),QE=2PM=2|x2-4x+3|

①当x<0时,x2-4x+3>0,OE=-2x,y=2[-2x+2(x2-4x+3)]=4×2-20x+12

②当1<x<3时,x2-4x+3<0,y=2[2x-2(x2-4x+3)]=-4×2+20x-12

③当0<x<1或x>3时,x2-4x+3>0,y=2[2x+2(x2-4x+3)]=4×2-12x+12

难题已发了

求数学中考压轴题(要有图的)越多越好 越难越好

压轴题,你并不需要拿满分,主要是拿到你能拿到的分。其实压轴题只是综合题而已,关键把心态调节好,首先别怕,一般情况会问三问,第一问都是比较简单的,而利用第一问是后面的关键。比如说有三问,两问做出来就行,剩下的一问会什么就写什么好了,主要是前面基础不丢分,分数自然就会上去。如果要锻炼自己的能力,也不妨买压轴题库来练练(E.G红对构系列中有一本关于这个的书)中考数学的压轴题,通常以函数与运动图形相结合的。尤其要注意二次函数的准确运用以及运动图形的理解,一般还要加上相似三角形解题。

如果想得满分可以在看看这些。

;bs=%D1%B9%D6%E1%CC%E2ie=gb2312sr=z=cl=3f=8wd=%D1%B9%D6%E1%CC%E2doc

多练习,慢慢就会好起来的。

中考一道超级难的数学压轴题,高手来啊

1),证明:设AC、EF交于点点H,由于点E、F分别是边CD,CB边的中点,因此,根据三角形推理,点H是线段CO的中点。,由于棱形角平分线定则,O是DB中点,则H也是EF中点且AH垂直于EF。由于三角形AFE为等边三角形,则AH是角EAF的垂直平分线。又因为线段AO=线段CO=2倍OH,因此,O点是等边三角形EFA的三个角的垂直平分线交点。则O点是经过点E、F、A三点的外接圆的圆心。因此得证。 其实没什么,就是写起来有点麻烦。追加分的话,我会考虑一口气答完的。

中考数学必做的36道压轴题有哪些

中考考试马上就要开始了,我就为大家整理一下中考数学必做的36道压轴题有哪些。

第1题 夯实双基“步步高”,强化条件是“路标”

第2题 “弓形问题”再相逢,“殊途同归”快突破

第3题 “模式识别”记心头,看似“并列”实“递进”

第4题 “准线”“焦点”频现身,“居高临下”明“结构”

第5题 莫为“浮云”遮望眼,“洞幽察微”探指向

中考数学压轴题做题技巧

构造定理所需的图形或基本图形

在解决问题的过程中,有时添加辅助线是必不可少的。对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。

线段、角的计算与证明问题

中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。 对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

动态几何

从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

以上就是我为大家整理的中考数学必做的36道压轴题有哪些,希望能帮助到大家,更多中考信息请继续关注本站!

求初中数学较难的压轴题(选择或填空题的压轴题也得,越难越好)。

希望对你有帮助 希望采纳

一、等腰(边)三角形存在问题:

典型例题:【版权归锦元数学工作室,不得转载】

例1:(2012广西崇左10分)如图所示,抛物线 (a≠0)的顶点坐标为点(-2,3),且抛物线 与y轴交于点B(0,2). (1)求该抛物线的解析式;(2)是否在x轴上存在点P使△PAB为等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由;

(3)若点P是x轴上任意一点,则当PA-PB最大时,求点P的坐标.

例2:(2012辽宁朝阳14分)已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(-1,0)。

(1)求点C的坐标;(2)求过A、B、C三点的抛物线的解析式和对称轴;

(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标;

(4)在抛物线对称轴上,是否存在这样的点M,使得△MPC(P为上述(3)问中使S最大时点)为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由。

例3:(2012山东临沂13分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A.O、B的抛物线的解析式;

(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.

例4:(2012内蒙古包头12分)已知直线y = 2x + 4 与x 轴、y 轴分别交于A , D 两点,抛物线 经过点A , D ,点B 是抛物线与x 轴的另一个交点。

(1)求这条抛物线的解析式及点B 的坐标;

(2)设点M 是直线AD 上一点,且 ,求点M 的坐标;

(3)如果点C(2,y)在这条抛物线上,在y 轴的正半轴上是否存在点P,使△BCP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。

例5:(2012福建龙岩14分)在平面直角坐标系xoy中, 一块含60°角的三角板作如图摆放,斜边 AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).

(1)请直接写出点B、C的坐标:B( , )、C( , );并求经过A、B、C三点的抛物线解析式;

(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C. 此时,EF所在直线与(1)中的抛物线交于第一象限的点M.

①设AE=x,当x为何值时,△OCE∽△OBC;

②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形,若存在,请求点P的坐标;若不存在,请说明理由.

练习题:【版权归锦元数学工作室,不得转载】

1. (2012广西百色10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.(1)求抛物线的解析式;

(2)连接BE,求h为何值时,△BDE的面积最大;

(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形,若存在,请求出h的值和点G的坐标;若不存在,请说明理由.

y=h

2. (2012江西省10分)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A.B两点(点A在点B左边),与y轴交于点C.(1)写出二次函数L1的开口方向、对称轴和顶点坐标;

(2)研究二次函数L2:y=kx2﹣4kx+3k(k≠0).

①写出二次函数L2与二次函数L1有关图象的两条相同的性质;

②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.

3. (2012湖南衡阳10分)如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)

(1)求此抛物线的解析式.(2)过点P作CB所在直线的垂线,垂足为点R,①求证:PF=PR;②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.

4. (2012湖南永州10分)如图所示,已知二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),l为过点(0,﹣2)且与x轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作PH⊥l,H为垂足.

(1)求二次函数y=ax2+bx﹣1(a≠0)的解析式;(2)请直接写出使y<0的对应的x的取值范围;(3)对应当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值.由此观察其规律,并猜想一个结论,证明对于任意实数m,此结论成立;

(4)试问是否存在实数m可使△POH为正三角形?若存在,求出m的值;若不存在,请说明理由.

5. (2012广东梅州11分)如图,矩形OABC中,A(6,0)、C(0,2 )、D(0,3 ),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.

(1)①点B的坐标是;②∠CAO=   度;③当点Q与点A重合时,点P的坐标为   ;(直接写出答案)

(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.

(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.

典型例题:【版权归锦元数学工作室,不得转载】

例1:(2012山东枣庄10分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠

在两坐标轴上,点C为 (-1,0) .如图所示,B点在抛物线y=x2+x-2图象上,过点B作

BD⊥x轴,垂足为D,且B点横坐标为-3.

(1)求证:△BDC≌△COA;

(2)求BC所在直线的函数关系式;

(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所

有点P的坐标;若不存在,请说明理由.

例2:(2012重庆市12分)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.

(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;

(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;

(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.

例3:(2012内蒙古赤峰12分)如图,抛物线 与x轴交于A.B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.

(1)求抛物线的解析式;

(2)求直线AF的解析式;

(3)在直线AF上是否存在点P,使△CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由.

例4:(2012海南省13分)如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,

OA交其对称轴 于点M,点M、N关于点P对称,连接AN、ON

(1)求该二次函数的关系式.

(2)若点A的坐标是(6,-3),求△ANO的面 积.

(3)当点A在对称轴 右侧的二次函数图象上运动,请解答下列问题:

①证明:∠ANM=∠ONM

②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标,如果不能,请说明理由.

练习题:【版权归锦元数学工作室,不得转载】

1. (2012广西河池12分)如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所

在的直线建立平面直角坐标系,抛物线 经过A、B两点.

(1)写出点A、点B的坐标;

(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物

线于点E、M和点P,连结PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单 位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;

(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P

的坐标;若不存在,请说明理由.

2:(2012湖南邵阳12分)如图所示,直线 与x轴相交于点A(4,0),与y轴相交于点B,将△AOB沿着y轴折叠,使点A落在x轴上,点A的对应点为点C.

⑴求点C的坐标;

⑵设点P为线段CA上的一个动点,点P与点A、C不重合,连结PB,以点P为端点作射线PM交AB于点M,使∠BPM=∠BAC① 求证:△PBC∽△MPA;

② 是否存在点P使△PBM为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由。

3. (2012云南省9分)如图,在平面直角坐标系中,直线 交x轴于点P,交y轴于点A.抛物线 的图象过点E(-1,0),并与直线相交于A、B两点.

(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;

(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

典型例题:【版权归锦元数学工作室,不得转载】

例1:(2012山西省14分)综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A.B两点,与y轴交于点C,点D是该抛物线的顶点.

(1)求直线AC的解析式及B.D两点的坐标;

(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A.P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.

(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.

例2:(2012山东日照10分)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为

(-3,0),经过B点的直线交抛物线于点D(-2,-3).

(1)求抛物线的解析式和直线BD解析式;

(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.

例3:(2012广西北海12分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,1)、C(d,2)。

(1)求d的值;

(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图像上。请求出这个反比例函数和此时的直线B′C′的解析式;

(3)在(2)的条件下,直线B′C′交y轴于点G。问是否存在x轴上的点M和反比例函数图像上的点P使得四边形PGMC′是平行四边形。如果存在,请求出点M和点P的坐标;如果不存在,请说明理由。

例4:(2012辽宁丹东14分)已知抛物线 与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且 .

(1)求抛物线的函数表达式; (2)直接写出直线BC的函数表达式;

(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).

求:①s与t之间的函数关系式;

②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.

(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.

例5:(2012黑龙江黑河、齐齐哈尔、大兴安岭、鸡西10分)如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.

(1)求A、B两点的坐标。(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.

(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理 由.

练习题:【版权归锦元数学工作室,不得转载】

1. (2012贵州安顺14分)如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.

(1)求抛物线的解析式.

(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.

①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.

②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

2. (2012湖北恩施8分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;

(2)设点M(3,m),求使MN+MD的值最小时m的值;

(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

3. (2012四川宜宾10分)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.

(1)求抛物线顶点A的坐标;

(2)设抛物线与y轴交于点B,与x轴交于点C.D(C点在D点的左侧),试判断△ABD的形状;

(3)在直线l上是否存在一点P,使以点P、A.B.D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

4. (2012湖南娄底10分)已知二次函数y=x2﹣(m2﹣2)x﹣2m的图象与x轴交于点A(x1,0)和点B(x2,0),x1<x2,与y轴交于点C,且满足 .

(1)求这个二次函数的解析 式;

(2)探究:在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形?如果有,求出点P的坐标;如果没有,请说明理由.

四、矩形、菱形、正方形存在问题;

典型例题:【版权归锦元数学工作室,不得转载】

例1:(2012黑龙江龙东地区10分)如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12 ,点C的坐标为(-18,0)(1)求点B的坐标;

(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由。

例2:(2012贵州六盘水16分)如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:

(1)当t为何值时,PQ∥BC.

(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.

(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.

例3:(2012辽宁铁岭14分)如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,

它的对称轴与x轴交于点D.直线 经过抛物线上一点B(-2,m)且与y轴交于点C,与抛物线

的对称轴交于点F.

(1)求m的值及该抛物线对应的解析式;

(2)P 是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;

(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.

备用图

例4:(2012福建漳州12分)已知抛物线y= x2 + 1(如图所示).

(1)填空:抛物线的顶点坐标是(______,______),对称轴是_____;

(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;

(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.

例5:(2012内蒙古通辽12分)如图,在平面直角坐标系中,将一个正方形ABCD放在第一象限斜靠在两坐标轴上,且点A(0,2)、点B(1,0),抛物线y=ax2﹣ax﹣2经过点C.

(1)求点C的坐标;(2)求抛物线的解析式;【版权归锦元数学工作室,不得转载】

(3)在抛物线上是否存在点P与点Q(点C、D除外)使四边形ABPQ为正方形?若存在求出点P、Q两点坐标,若不存在说明理由.

练习题:【版权归锦元数学工作室,不得转载】

1. (2012山东烟台12分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.

(1)直接写出点A的坐标,并求出抛物线的解析式;

(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.

2. (2012福建福州13分)如图①,在Rt△ABC中,∠C=90º,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单 位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).

(1) 直接用含t的代数式分别表示:QB=______,PD=______.

(2) 是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3) 如图②,在整个运动过程中,求出线段PQ中点M所经过的路径长.

3. (2012辽宁锦州14分)如图,抛物线 交 轴于点C,直线 l为抛物线的对称轴,点P在第三象限且为抛物线的顶点.P到 轴的距离为 ,到 轴的距离为1.点C关于直线l的对称点为A,连接AC交直线 l于B.

(1)求抛物线的表达式;【版权归锦元数学工作室,不得转载】

(2)直线 与抛物线在第一象限内交于点D,与 轴交于点F,连接BD交 轴于点E,且

DE:BE=4:1.求直线 的表达式;

(3)若N为平面直角坐标系内的点,在直线 上是否存在点M,使得以点O、F、M、N为

顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

4. (2012青海省12分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.

(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.

史上最难中考数学压轴题(史上最难中考数学压轴题计算量大)

以上就是史上最难中考数学压轴题和史上最难中考数学压轴题计算量大的全部内容,还有不明白的可以直接咨询~~

本图文由用户发布,该文仅代表作者本人观点,本站仅提供信息存储空间服务。如发现本站有涉嫌抄袭侵权/违法违规的内容,联系本站举报。转发注明出处:https://www.xsy-edu.com/n/1171.html

发表回复

登录后才能评论