sin变成cos的转换公式 sincos转换公式口诀

sin变成cos的转换公式

sin变cos的公式:sin(π/2+α)=cosα。

正弦介绍如下:

正弦(sine),数学术语,是三角函数的一种,在直角三角形中,任意一锐角∠A的对边与斜边的比,叫作∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。古代说法,正弦是股与弦的比例。

古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边,“勾”、“股”是直角三角形的两条直角边。正弦是股与弦的比例,余弦是余下的那条直角边与弦的比例。

余弦介绍如下:

余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°(如概述图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。

数学介绍如下:

数学[英语:mathematics,源自古希腊语μάθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。

数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。就纵度而言,在数学各自领域上的探索亦越发深入。

sincos转换公式口诀

sin和cos的转化公式口诀是:”正弦变余弦,余弦变正弦,正切变余切,余切变正切”。这个口诀的含义是在三角函数中,如果要将sin转化为cos,或者将cos转化为sin,只需要交换对边和斜边的位置即可。同样的,如果要将tan转化为cot,或者将cot转化为tan,只需要交换邻边和对边的位置即可。具体来说,sin和cos的转化公式为sin(x)=cos(90°-x),cos(x)=sin(90°-x)。而tan和cot的转化公式为tan(x)=cot(90°-x),cot(x)=tan(90°-x)。

sin和cos的相互转化

sin和cos和1的关系就是二倍角与半角的关系,转换公式如下:

1、二倍角转化公式:

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

2、由二倍角公式,可以继续推导出半角转化公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

常用三角函数

1、万能公式

sina=[2tan(a/2)]/[1+tan²(a/2)]

cosa=[1-tan²(a/2)]/[1+tan²(a/2)]

tana=[2tan(a/2)]/[1-tan²(a/2)]

2、降幂公式

sin²α=[1-cos(2α)]/2

cos²α=[1+cos(2α)]/2

tan²α=[1-cos(2α)]/[1+cos(2α)]

3、三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

高中数学sin怎么变为cos

sin(π/2-a)=cos a或者sin(π/2+a)=cos a。

π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

cot(π/2-α)=tanα

扩展资料:

更多公式:

公式一

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)= tanα

cot(π+α)=cotα

公式三

任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):

sin(-α)=-sinα

cos(-α)= cosα

tan(-α)=-tanα

cot(—α)=—cotα

公式四

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)= sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)= cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

参考资料:百度百科—三角函数诱导公式

本图文由用户发布,该文仅代表作者本人观点,本站仅提供信息存储空间服务。如发现本站有涉嫌抄袭侵权/违法违规的内容,联系本站举报。转发注明出处:https://www.xsy-edu.com/n/74805.html