高中数学学什么,大学高等数学学什么内容

说起高中数学学什么,大学高等数学学什么内容的知识,大家都知道,还有人问高等数学学什么,下面就和小编来学习一下!

本文目录一览:

1、高等数学学什么

2、高等数学包括哪些

3、请问什么是高等数学

高等数学学什么

击上面“不学无数”蓝字加关注,来不及看点击右上角“收藏”!

高中数学学什么,大学高等数学学什么内容

有学生向我推荐知乎中关于数学的问答:

问:怎么看待将来从事文科工作的人学习高等数学?

答:

谢邀。很巧我就是工商管理系的学生,高中学的文,目前数学、工商管理专业双学位在读。

数学提供了认识世界、构造世界的一种方式。这种方式是公理化的、逻辑的、精确的、抽象的。初等数学的教学已经在训练这些思维,而高等数学则对它们提出了更高的要求。

逻辑和定量的思维我想你一定懂,在这里我想简要地介绍一下公理化思想。所谓公理化,就是我在创立一个体系之前,先设定几条公理,它们是不言自明的,比如“过直线外一点只能做一条直线与已知直线平行。”在古代,只有几何学达到了这个高度,而微积分的严格化以后,数学的所有分支纷纷建立起公理化体系。

公理化思维在人文社会领域有应用吗?有。非常经典的一个例子就是《独立宣言》:“我们认为这些真理是不言而喻的:人人生而平等,造物者赋予他们若干不可剥夺的权利,其中包括生命权、自由权和追求幸福的权利。”看,这就是公理化思想的巨大威力。通过高等数学的学习,你会对公理化思想有更深刻的理解,能够从更深刻、更本质的角度去研究社会学科。

至于逻辑思维,无心冒犯,但是我发现一些文科生的逻辑思维真的很糟糕。有些人常常会犯很显然的逻辑错误,比如错误归因,因果倒置,将归纳法和演绎法混淆等等典型的谬误。日常的生活中这无伤大雅,但是在学习和研究中这些错误是很严重的。一个经受了比较严格的高等数学训练的人是会习惯性地避免这些错误的。一个律师,你需要在法庭上将法官说服,一个公司管理者,你需要做出正确的决策,逻辑思维是很重要的一环。

精确化的要求渗透到了现代社会的每一个角落。工商管理学的一个很重要的分支——运筹学的崛起就是这个大趋势下的一个影子。不光光是运筹学,数理统计学也是包括管理学在内的很多社会科学有力的武器。这些数学工具,常常是需要对高等数学有所理解才能熟练地、灵活地掌握的。未来的法学、管理学必然会在精确化、定量化的道路上越走越远,这给新一代的文科工作者提出了更高的要求。

抽象性是数学的灵魂,是数学之美的体现。虽然就目前而言,文科生不需要接触太抽象的数学,不过,高等数学,包括线性代数、概率统计基础里面确实也没有什么很抽象的东西。用点心,好好听课写作业,还是挺简单的。

另外,高等数学是现代科学思想与方法的源头,作为一个现代受高等教育的人,不管你的专业是什么,都应该或多或少学习一点高等数学。

希望这个回答能对你有所帮助。

作者:石逍遥

高等数学包括哪些

问题一:高等数学包含哪些内容,有哪些科目 你好!内容包含: 一、 函数与极限 二、导数与微分 三、导数的应用 四、不定积分 五、定积分及其应用 六、空间解析几何 七、多元函数的微分学 八、多元函数积分学 九、常微分方程 十、无穷级数 主要包括的科目有:微积分,数理统计等。 其实,高中就有涉及,高数只是深化了一些。 谢谢! 问题二:高数一包括哪些内容 具体专业的数学要求不同的,各个高校可能会有自己相关的调整,最好直接向报考高校咨询,以下是全国统考数学的分类: 数学一: 1、高等数学(函数、极限、连续、一元函数的微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程); 2、线性代数; 3、概率论与数理统计。 数学二: 1、高等数学(函数、极限、连续、一元函数微积分学、微分方程); 2、线性代数。 数学三: 1、高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程); 2、线性代数; 3、概率论与数理统计。 数学四: 1、高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、常微分方程); 2、线性代数; 3、概率论 参考文献:中国研究生招生信息网 问题三:高等数学包括哪些内容 1. 2005年数学考试大纲的修订说明与评述 (1) 基于工学、经济学、管理学门类各学科专业对硕士研究生入学所应具备的数学知识和能力的不同要求,数学统考试卷仍分为数学一、数学二、数学三和数学四。 (2) 数学一、二试卷高等数学部分,“函数、极限、连续”的考试要求的第4条增加“了解初等函数的概念”的要求。 原为“掌握基本初等函数的性质及其图形”。变为“掌握基本初等函数的性质及其图形,了解初等函数的概念”。 评述:进一步强调基础知识点。 (3) 数学一试卷高等数学部分,“多元函数微分学”的考试要求的第6条,数学二试卷高等数学部分,“多元函数微积分学”的考试要求的第3条,将原来的“会用隐函数的求志法则”改为“了解隐函数存在定理,会求多元隐函数的偏导数”。 评述:进一步强调基础知识点与概念理解的重要性。 (4) 数学三、四试卷高等数学部分,“函数、极限、连续”的考试要求的第3条,将“理解反函数、隐函数的概念”改为“了解反函数、隐函数的概念”, 原为“理解复合函数、反函数、隐函数和分段函数的概念”。变为“理解复合函数及分段函数的概念,了解反函数及隐函数的概念”。 评述:进一步强调基础知识点。 “一元函数微分学”的考试要求的第1条,增加“会求平面曲线的切线方程和法线方程”的要求。 原为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)”。 变为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。” 评述:进一步强调基础知识点,进一步提升对考生能力的要求。 (5) 数学三、四试卷线性代数部分,“线性方程组”的考试要求的第4条改为“4.理解非齐次线性方程组解的结构及通解的概念。5.掌握用初等行变换求解线性方程组的方法”。 原为“4.掌握理解非齐次线性方程组基础解系的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解”。变为以上的两条。 评述:进一步提升对考生能力的要求。 (6) 对数学一、三试卷概率论与数理统计部分和数学四试卷概率论部分的一些概念、考试内容和考试要求在文字表述上作了修改,使其更加规范和统一。 (7) 对数学一、二试卷的样卷进行了修订。 (8) 对数学一、二、三、四试卷中的考试内容和考试要求的表述更进一步明确、规范和统一,在考试内容部分只列出内容范围,而将有关内容的要求层次和应用这些内容可以解出的问题在考试要求部分列出。 2.2005年考研数学特点 2005考研数学试卷将进一步加大对考生掌握数学基础知识的准确性与全面性的考察力度,同时坚固不同知识点综合交叉运用性的基本能力。就难度而言,会维持2004年的水平。 2004年数学试题是近5年以来较容易也是最基本的一套试题。 2005年大纲维持2004年要求基本不变。只是进一步加强了对基础性知识点的重视与规范化要求。如:一元微分学中:增加了“接初等函数的概念准确的概念”,“会求平面曲线的切线方程与法线方程”,多元微分学强调了“了解隐函数存在定理,会求多元隐函数的偏导数”,线性代数强调“理解非齐次方程组解的结构及通解的概念”,“掌握用初等行变换求解线性方程组的方法”,等等。准确而全面的概念理解与过硬的基本计算能力,将是2005年考生取胜的关键。加强知识的基础性、系统综合性与交叉性的训练,努力提升对知识的洞察力,以不变应万变,排除误导,是我们的建议。 关于2005考研试题的特点与结……>> 问题四:考研的高等数学一包括哪些 考研数一一共包括四本书!两本高数(同济五版,绿色封皮)线性代数(同济四版,紫色封皮)概率论与数理统(浙大的三版)这就考研数一用书,不分文理的! 问题五:高数有哪些分类,急求!!!! 高等数学通常分为高数A、高数B、高数C三类。 高数A对应理工类专业(数学专业不学高数,而是学难度更大的数学分析。) 高数B对应经管类专业 高数C对应文史类专业(语言类专业不学高数;法学专业有些学校学高数C,有些学校例如华政不学高数。) 高数B与高数A的区别总体上说就是: 1、A的难度和知识的广度要高于B,因此A的课时比B要多 2、A主要偏向于理工科的知识结构范围,B偏向于经济类的计算 3、一般来说把A都搞得很好了,考B一般也会很好。 4、高数A、B的教学基本要求和历届考题高数老师应该会让你们买。 5、高数A、B是混不过去的,所以上课一定要去,作业一定要自己做。混的话,不管你高中数学有多好,都会挂得很惨的。 6、如果要问高数的具体难度,可以到书店翻一下历年的伐研题,学校考试不会高于这个难度。 理工类高数包括: 一、与高数B共同内容 1. 函数、极限、连续 2. 一元函数微积分 3. 多元函数微积分 4. 级数 5. 常微分方程 二、A要求但B不要求 (1) 掌握基本初等函数的性质和图形 (2) 掌握极限存在的二个准则,并会利用它们求极限 (3) 会用导数描述一些简单的物理量 (4) 了解曲率,曲率半径的概念,并会计算 (5) 了解求方程近似解的二分法和切线法 (6) 了解曲线的切线和法平面及曲面的切平面和法线的的概念,会求它们的方程 (7) 三重积分 (8) 曲线曲面积分 (9) 向量代数与空间解析几何 高等数学与高中联系不大,只有函数、极限和空间向量是从高中过渡的内容。但是函数的基础一定要打好!否则苦海无边,到时还要重翻高中课本。 问题六:高等数学包括哪些范围?有加分!!! 10月19日 09:22 这和您报考学校专业的具体要求有关,数二不考线性代数、数三、数四属于经济数学。 1. 2005年数学考试大纲的修订说明与评述 (1) 基于工学、经济学、管理学门类各学科专业对硕士研究生入学所应具备的数学知识和能力的不同要求,数学统考试卷仍分为数学一、数学二、数学三和数学四。 (2) 数学一、二试卷高等数学部分,“函数、极限、连续”的考试要求的第4条增加“了解初等函数的概念”的要求。 原为“掌握基本初等函数的性质及其图形”。变为“掌握基本初等函数的性质及其图形,了解初等函数的概念”。 评述:进一步强调基础知识点。 (3) 数学一试卷高等数学部分,“多元函数微分学”的考试要求的第6条,数学二试卷高等数学部分,“多元函数微积分学”的考试要求的第3条,将原来的“会用隐函数的求志法则”改为“了解隐函数存在定理,会求多元隐函数的偏导数”。 评述:进一步强调基础知识点与概念理解的重要性。 (4) 数学三、四试卷高等数学部分,“函数、极限、连续”的考试要求的第3条,将“理解反函数、隐函数的概念”改为“了解反函数、隐函数的概念”, 原为“理解复合函数、反函数、隐函数和分段函数的概念”。变为“理解复合函数及分段函数的概念,了解反函数及隐函数的概念”。 评述:进一步强调基础知识点。 “一元函数微分学”的考试要求的第1条,增加“会求平面曲线的切线方程和法线方程”的要求。 原为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)”。 变为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。” 评述:进一步强调基础知识点,进一步提升对考生能力的要求。 (5) 数学三、四试卷线性代数部分,“线性方程组”的考试要求的第4条改为“4.理解非齐次线性方程组解的结构及通解的概念。5.掌握用初等行变换求解线性方程组的方法”。 原为“4.掌握理解非齐次线性方程组基础解系的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解”。变为以上的两条。 评述:进一步提升对考生能力的要求。 (6) 对数学一、三试卷概率论与数理统计部分和数学四试卷概率论部分的一些概念、考试内容和考试要求在文字表述上作了修改,使其更加规范和统一。 (7) 对数学一、二试卷的样卷进行了修订。 (8) 对数学一、二、三、四试卷中的考试内容和考试要求的表述更进一步明确、规范和统一,在考试内容部分只列出内容范围,而将有关内容的要求层次和应用这些内容可以解出的问题在考试要求部分列出。 2.2005年考研数学特点 2005考研数学试卷将进一步加大对考生掌握数学基础知识的准确性与全面性的考察力度,同时坚固不同知识点综合交叉运用性的基本能力。就难度而言,会维持2004年的水平。 2004年数学试题是近5年以来较容易也是最基本的一套试题。 2005年大纲维持2004年要求基本不变。只是进一步加强了对基础性知识点的重视与规范化要求。如:一元微分学中常增加了“接初等函数的概念准确的概念”,“会求平面曲线的切线方程与法线方程”,多元微分学强调了“了解隐函数存在定理,会求多元隐函数的偏导数”,线性代数强调“理解非齐次方程组解的结构及通解的概念”,“掌握用初等行变换求解线性方程组的方法”,等等。准确而全面的概念理解与过硬的基本计算能力,将是2005年考生取胜的关键。加强知识的基础性、系统综合性与交叉性……>> 问题七:大专高等数学(一)包含哪些内容 大专高等数学(一),指的是自学考试大专所用的高等数学教材。包含的内容有: 1、函数。包括初等代数、 *** 与逻辑符号等预备知识,函数的概念与图形,三角函数、指数函数、对数函数,以及经济学中的常用函数、需求函数与供给函数、成本函数、收益函数与利润函数。 2、极限与连续。包括函数极限的概念、函数极限的性质与运算,无穷小量与无穷大量,连续函数的概念与性质。 3、导数与微分。包括导数的运算,几种特殊函数的求导法、高阶导数。 4、微分中值定理和导数的应用。包括微分中值定理,洛必达法则,函数单调性的判定,函数的极值及其求法,函数的最值及其应用,曲线的凹凸性和拐点,曲线的渐近线,导数的经济分析中的应用。 5、一元函数积分学。包括原函数与不定积分的概念,几本积分公式,换元积分法,分部积分法,微分方程初步,定积分的概念及其基本性质,微积分基本定理,定积分的换元积分法和分部积分法,反常积分,定积分的应用。 6、多元函数微积分。包括多元函数的基本概念,偏导数,全微分,多元复合函数的求导法则,隐函数的求导法则,二元函数的极值,二重积分。

请问什么是高等数学

展开全部

高等数学简介

初等数学研究的是常量,高等数学研究的是变量。

高等数学(也称为微积分,它是几门课程的总称)是理、工科院校一门重要的基础学科。作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性是数学最基本、最显著的特点–有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。因此,学好高等数学对我们来说相当重要。然而,很多学生对怎样才能学好这门课程感到困惑。要想学好高等数学,至少要做到以下四点:

首先,理解概念。数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。

其次,掌握定理。定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。

第三,在弄懂例题的基础上作适量的习题。要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法法在理解例题的基础上作适量的习题。作题时要善于总结—- 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。

第四,理清脉络。要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。

高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用.微积分的理论是由牛顿和莱布尼茨完成的.(当然在他们之前就已有微积分的应用,但不够系统)无穷小和极限的概念微积分的基本概念的理解有很大难度。

[编辑本段]高等数学分为几个部分:

一、函数 极限 连续

二、一元函数微分学

三、一元函数积分学

四、向量代数与空间解析几何

五、多元函数微分学

六、多元函数积分学

七、无穷级数

八、常微分方程

[编辑本段]高等数学主要包括

一、 函数与极限分为

常量与变量

函数

函数的简单性态

反函数

初等函数

数列的极限

函数的极限

无穷大量与无穷小量

无穷小量的比较

函数连续性

连续函数的性质及初等函数函数连续性

二、导数与微分

导数的概念

函数的和、差求导法则

函数的积、商求导法则

复合函数求导法则

反函数求导法则

高阶导数

隐函数及其求导法则

函数的微分

三、导数的应用

微分中值定理

未定式问题

函数单调性的判定法

函数的极值及其求法

函数的最大、最小值及其应用

曲线的凹向与拐点

四、不定积分

不定积分的概念及性质

求不定积分的方法

几种特殊函数的积分举例

五、定积分及其应用

定积分的概念

微积分的积分公式

定积分的换元法与分部积分法

广义积分

六、空间解析几何

空间直角坐标系

方向余弦与方向数

平面与空间直线

曲面与空间曲线

八、多元函数的微分学

多元函数概念

二元函数极限及其连续性

偏导数

全微分

多元复合函数的求导法

多元函数的极值

九、多元函数积分学

二重积分的概念及性质

二重积分的计算法

三重积分的概念及其计算法

十、常微分方程

微分方程的基本概念

可分离变量的微分方程及齐次方程

线性微分方程

可降阶的高阶方程

线性微分方程解的结构

二阶常系数齐次线性方程的解法

二阶常系数非齐次线性方程的解法

十一、无穷级数

无穷级数是研究有次序的可数无穷个数或者函数的和的收敛性及和的数值的方法,理论以数项级数为基础,数项级数有发散性和收敛性的区别。只有无穷级数收敛时有一个和;发散的无穷级数没有和。算术的加法可以对有限个数求和,但无法对无限个数求和,有些数列可以用无穷级数方法求和。 包括数项级数、函数项级数(又包括幂级数、Fourier级数;复变函数中的泰勒级数、Laurent(洛朗)级数)。

以上就是关于高中数学学什么,大学高等数学学什么内容的知识,后面我们会继续为大家整理关于高等数学学什么的知识,希望能够帮助到大家!

本图文由用户发布,该文仅代表作者本人观点,本站仅提供信息存储空间服务。如发现本站有涉嫌抄袭侵权/违法违规的内容,联系本站举报。转发注明出处:https://www.xsy-edu.com/n/14726.html